
 VBA Excel 2013/2016

1

VBA

Visual Basic for Applications

Learner Guide

VBA Excel 2013/2016

2

Table of Contents

SECTION 1 ◊ WORKING WITH MACROS ...5

WORKING WITH MACROS ..6

About Excel macros ...6

Opening Excel (using Windows 7 or 10) ..6

Recognizing the macro tools and what they are ..8

Practice macros first ...8

Create your macro ...9

Recording a macro ... 10

Recording your second macro ... 12

Testing your recorded macro shortcut keys ... 13

Testing your recorded macro from the menu ... 14

View my macro code in the VBE .. 15

SECTION 2 ◊ ASSIGNING MACROS ... 21

LOCATION OF RECORDED MACRO ... 22

Absolute or Relative macro recording .. 22

Using Absolute ... 22

Viewing Absolute code ... 24

Running Absolute ... 24

Using Relative .. 25

Testing Absolute and Relative macros ... 26

Viewing code of both Absolute and Relative macros 27

Code for Absolute .. 27

Code for Relative ... 28

Assigning your macros to menus, buttons and toolbars 28

Adding a button to your toolbar .. 28

Testing your button .. 29

Adding a new button to the Quick Access Toolbar ... 29

Add an Icon to the QAT for your macro .. 30

SECTION 3 ◊ MAKE DECISIONS ... 33

 VBA Excel 2013/2016

 3

Making Decisions with code .. 34

Multiple-line Else ... 35

Testing your If statement ... 37

Turn on the Relative Reference ... 38

Copying Code .. 38

Adding Do… Loop statement... 38

Testing the Do Loop .. 39

Copying Code .. 40

Testing your new If statement.. 41

Adding Do… Loop statement... 41

Testing the Do Loop .. 42

How to count.. 46

For… Next statement ... 46

Variable Naming Conventions ... 48

Constants .. 48

Built-in Constants ... 49

Object Variables .. 50

Working with objects using a For … Next statement 51

How to select a range based on starting point ... 52

How to add one macro in another's routine ... 54

SECTION 4 ◊ PERSONAL.XLSB ... 56

Personal Workbook Macros .. 57

How do I create a Personal.xlsb file? .. 57

Auto Run Macro(s) .. 58

Auto_Open .. 59

Auto_Close .. 60

Final Exercise ... 60

VBA Excel 2013/2016

 4

VBA Excel 2013/2016

 5

SECTION 1 ◊ WORKING WITH MACROS

 What will I learn in this section?

Create a macro

Run a macro

View a macro

VBA Excel 2013/2016

 6

WORKING WITH MACROS

A b o u t E x c e l m a c r o s

This will be an introduction to Visual Basic for Applications (VBA) in Excel

2013/2016. For Excel power user who is not yet a programmer or anyone who just

wants to know more. VBA is easy to learn, by creating a macro and then viewing

the code anyone can quickly learn how to read the language.

The more you learn the more you can modify VBA to have the macro do the extra

task that a user needs.

The Visual Basic Editor (VBE) is the user-friendly program that you will use to talk

with Excel. In it you can create your VBA procedures (macros). You will then be

able to modify and test these components easily with short cut keys that will help

you step through your code.

The first macro you will create is a macro you record using Excel’s macro

recorder. You will record yourself doing a few steps with the AutoFilter feature.

O p e n i n g E x c e l (u s i n g W i n d o w s 7 o r 1 0)

1. Click the Start button in Windows 7 on the taskbar.

Windows 10 click Search:

2. In Windows 7 point to All Programs.

In Windows 10 type: Excel in the Search box.

VBA Excel 2013/2016

 7

3. Click Microsoft Excel (on the menu in Windows 7)

(on the menu in Windows 10), click Excel

2016.

Your screen should look like this.

1. Click the File tab and Open menu or press Ctrl + F12.

2. Open the Sort&Filter.xlsm file.

Your screen should look like this.

Notice: If you do

not see the file

extension .xlsm

your computer is

fine. Normally this

feature is turned off.

It is shown here to

identify this file as

different. This file

was saved as a

Macro-enabled file

format.

VBA Excel 2013/2016

 8

R e c o g n i z i n g t h e m a c r o t o o l s a n d w h a t t h e y a r e

Under the View tab in Excel you will find the Macro group. In the Group there are

three submenu items.

Name Description

View Macros… List the Macros available in Excel

Record Macro… Start recording a macro by typing a name for your

macro and a location to store the macro

Use Relative References Tool used to view, edit and create macros

On the View tab in the Macro group the Macro menu when clicked should look like

this.

P r a c t i c e m a c r o s f i r s t

Before you record a macro, it is a good idea to practice the macro steps and if

there are more than 6-8 steps it is a good idea to write them down to make sure

you do not miss a step when recording.

1. Click in cell F5 and click the Data tab.

2. On the Data ribbon in the Sort & Filter group, click to Filter button.

Filter is a toggle button for turning the filter on or off.

Your screen should look like this.

VBA Excel 2013/2016

 9

3. Click the down-arrow for Division and click (Select All) to remove

checkmarks.

4. Check the box for Bremerton and click the OK button.

5. On the Data tab, Sort & Filter group, click Filter to turn off filter.

Filter is a toggle button for turning the filter on or off.

Notice that your data is now without any filter and the AutoFilter has been

turned off.

C r e a t e y o u r m a c r o

The first character of the macro name must be a letter. Other characters can be

letters, numbers, or underscore characters. Spaces are not allowed in a macro

name; an underscore character works well as a word separator.

o Do not use a macro name that is also a cell reference, or you can get an

error message that the macro name is not valid.

o You can use CTRL+ letter (for lowercase letters) or CTRL+SHIFT+ letter

(for uppercase letters), where letter is any letter key on the keyboard. The

shortcut key letter you use cannot be a number or special character such

as @ or #.

o In the Store macro in box, click the location where you want to store the

macro. If you want a macro to be available whenever you use Excel, select

Personal Macro Workbook.

o If you want to include a description of the macro, type it in the Description

box. Anything you type here will show up as green commented text in the

macro module.

VBA Excel 2013/2016

 10

Look at the bottom right corner of the status bar in Excel. You should see a macro

button.

The macro button is just to the right of the word “Ready”. You can click on this

button to open the Record Macro dialog box. Once you are recording you can

click this button again to stop the macro from recording.

The macro button changes when recording, depending on the Excel version it will

be white or black.

R e c o r d i n g a m a c r o

The Macro Recorder works like a tape recorder. Whereas a tape recorder records

all the sounds, Excel recorder records all the actions that you perform when you

work in Excel.

In the next few steps you will record two macros. These macros will be stored in

the Sort&Filter.xlsm workbook.

1. Click the View tab, point to Macro, click the down arrow to open the

menu and click Record Macro…on the menu.

Notice: The macro button has two parts; the top half opens the Macro dialog box

used to see macros you have already recorded. You will use the top half later in

the book.

The bottom half opens the menu that you will be using in this lesson.

VBA Excel 2013/2016

 11

Your screen should look like this.

Notice you have four items to complete as explained in the bullet points above.

2. In the Macro name: text box type: TurnOnOffAutoFilter

AutoFilter is a toggle menu for on or off.

3. Click in the Shortcut key: text box, and press: Shift + A

Your screen should look like this.

4. In the Macro name: text box type: TurnOnOffAutoFilter

AutoFilter is a toggle menu for on or off.

5. Click in the Shortcut key: text box, and press: Shift + A

Your screen should look like this.

VBA Excel 2013/2016

 12

Notice your shortcut key is now, Ctrl +shift + A. You have assigned a shortcut
key. Remember any shortcut key you assign will over write Excel’s shortcut keys.

Your shortcut key is senior and become the primary.

If you need to assign a macro after you have created your macro, you will need

to click the Options button in the Macro dialog box.

6. In the Store macro in: drop down leave “This workbook” as the selection.

7. In the Description: text box, select the text and type:

My toggle for Filter

8. Click the OK button to turn on the recorder.

At the bottom, your screen should look like this.

Notice the black or white square box (depending on your Excel version) on the Status

bar. This is now the Stop Recording button. You can also click the down arrow for

the Macros menu and select Stop Recording.

9. Click on the cell F5.

10. Click the Data tab, point to Filter and click the Filter button.

11. Click the Stop Recording button.

You have completed all the step needed and you have created your first macro.

R e c o r d i n g y o u r s e c o n d m a c r o

Your second macro will be to select Bremerton as the filtered item.

1. Click the View tab and click the Macros down-arrow.

2. Click the Record Macro… menu.

3. In the Macro name: text box type: MyBremerton.

4. Click in the Shortcut key: text box, click in the box and press: Shift + B

VBA Excel 2013/2016

 13

Your screen should look like this.

Notice your shortcut key is now, Ctrl +shift + B.

5. In the Description: text box, select the text and type: My Bremerton

filtered list.

6. Click the OK button to turn on the recorder.

7. Click the down arrow for Division, uncheck Select All and check

Bremerton.

8. Click the Stop Recording button.

You have now created the second macro.

T e s t i n g y o u r r e c o r d e d m a c r o s h o r t c u t k e y s

1. Press the shortcut key: Ctrl + Shift + A

Remember the Filter is a toggle and this turns it off.

2. Press the shortcut key: Ctrl + Shift + A

Now the shortcut key turn the Filter back on.

3. Press the shortcut key: Ctrl + Shift + B

Now only Bremerton is showing.

Your screen should look like this.

VBA Excel 2013/2016

 14

T e s t i n g y o u r r e c o r d e d m a c r o f r o m t h e m e n u

1. Click the View tab (if needed) and point to Macro and click the down-

arrow.

2. Click the View Macros menu.

Your screen should look like this.

3. Select the TurnOnOffAutoFilter from the macro list window.

4. Click the Run button in the Macro dialog box.

Your filter is turned off.

5. Click the down-arrow and click View Macros.

6. Select TurnOnOffAutoFilter from the macro list window.

7. Click the Run button in the Macro dialog box.

Your filter is turned on.

VBA Excel 2013/2016

 15

8. Click the down-arrow and click View Macros.

9. Select MyBremeton from the macro list window.

10. Click the Run button in the Macro dialog box.

 Your screen should look like this.

V i e w m y m a c r o c o d e i n t h e V B E

There are a few things to know before you jump into the Visual Basic Editor.

Let’s start with code that you will be viewing and a few other items.

• Code: black text for instructions, blue for key words in code and

green text for comments for humans to read.

o Instructions, operators and variables will be

black text

o Keywords: terms that have special meaning will

be blue text

o Comments: text for only humans to read will be

green text

• Module: VBA modules are stored in an Excel workbook in folders that can
be viewed using the VBE. Your VBA code is stored in the module sheet.
You can have many module sheets and you can name them.

• Procedures: A procedure is the basic unit of computer code that performs

an action. There are two procedures; Sub procedure and Function

procedure.

VBA Excel 2013/2016

 16

• Sub and End Sub: A sub routine consist of a single or many statements

that can be executed in many ways.

Example:

Sub Test()

Sum = 1 + 1

MsgBox “The answer is “ & Sum

End Sub

• Function: Just as its name implies you can create your own functions

using the power of VBA. Example:

Function AddTwo(arg1, arg2)

AddTwo = arg1 + arg2

End Function

• Objects: VBA manipulates objects; active objects would be workbooks,

sheets, and ranges. Example: worksheets(“Sheet1”).range(“A1”)

• VBA variables: You can assign values to VBA variables. (Interest is the

variable below)

Example: Interest = worksheets(“Sheet1”).Range(“A1”).Value

• Object methods: A method is an action that is performed with the object.

Example: Range(“A1”).ClearContents

• Standard programming constructs: VBA can and does all of the

standard programming language items; for – next, If – then, Case and

loops etc.

• Events: Excel VBA recognizes specific events, for example; Workbook

open or close, object is clicked (called focus), keyboard is pressed,

worksheet is activated or deactivated, and cell is entered or edited. Many

more…

1. To enter the VBE, you can click on the Developer’s tab, Code group and

click Visual Basic button or press the Alt + F11 keys.

2. Double click the Module1 sheet in the Modules folder.

VBA Excel 2013/2016

 17

Your screen will look like this.

Depending on how much you get into VBA you may or may not need to know

everything you have access to in the VBE. In this booklet, only the main items that

will be used will be descripted.

 Under the View menu you will find the menu items for Project Explorer and

Properties Window, with shortcut keys.

VBA Excel 2013/2016

 18

You can run some macros from within VBE but not all. You can use the Break and

Reset for your macros, you will learn how to use those latter in this booklet.

You can also view your macro dialog box from inside the VBE.

When you have a number of macros in a module sheet you can select one from

the drop-down list (top right side) to reach the code on the module scheet.

This will select the macro and bring the macro code to the top of your screen.

A Sub procedure (the basic structure of a macro)

VBA Excel 2013/2016

 19

The parts you see here in the screen shot above are broken down into:

Sub and End Sub - keywords

Comments - easy to read information that describes what the macro and

commands are all about.

Statement block – the executable commands, what the macro code will tell Excel

to do

VBA Excel 2013/2016

 20

Section 1 – Review

You must be able to answer the following questions on your own. As you review

the questions below, write in your answer below each one.

1. What is the first character a macro should start with?

2. What color are comments in a sub routine?

3. What is the shortcut key to open the VB Editor?

4. Can you have more than one module in a workbook?

Additional Study

Use the Microsoft Excel help features to look up the key words from this section

for additional information. Example: AutoSum, AutoFilter.

VBA Excel 2013/2016

 21

SECTION 2 ◊ ASSIGNING MACROS

What will I learn in this section?

Relative References in macros

Assign Macro to a button or QAT

VBA Excel 2013/2016

 22

LOCATION OF RECORDED MACRO

When you record a macro, its code is recorded in a module in the active

workbook. You can select another workbook or the Personal.xls workbook. If you

would like the macro you record to be globe, meaning you can run the macro

regardless of the workbook you open then record the macro in the Personal.xls

workbook.

If a macro is recorded in the wrong workbook the macro can be copied from one

module to another module.

A b s o l u t e o r R e l a t i v e m a c r o r e c o r d i n g

Just like formulas that are relative reference or absolute, when you record a

macro it can be one or the other. When using Absolute; if you click on cell D2,

then when you run the macro D2 is used. But the Relative works by moving the

same number of cells based on the action during the recording. Example would be

that with relative if you pressed the Enter key the action would be that you moved

down one cell.

You will do two macros in this section; one absolute and one relative. Then take a

look at how the code is different.

U s i n g A b s o l u t e

1. Right click one of the tabs of your ribbon.

2. Select the Customize the Ribbon… menu.

3. Click the check box next to Developer.

4. Open Absolute&Relative.xlsx class file.

VBA Excel 2013/2016

 23

5. Click the Record Macro button.

6. Type: TitleMyAbsolute for Macro name.

7. In the Description box type: Use Absolute title for heading.

8. Click the OK button to start recording.

9. Click in C2 and type: Western Region

10. Press [Enter] and type: First Quarter Sales

11. Press the [Enter] key.

12. Select cell C2 and drag to cell F2.

13. Click the Merge and Center button.

14. Select cell C3 and drag to cell F3.

15. Click the Merge and Center button.

Your screen should look like this.

16. Click the Stop Recording macro button.

VBA Excel 2013/2016

 24

V i e w i n g A b s o l u t e c o d e

1. On the Developer’s ribbon, click the Visual Basic button.

2. Verify that Module 1 is selected in the open workbook.

Your screen should look like this.

Examine the code with your instructor. Notice the actual cell addresses used.

3. Close the Visual Basic Editor.

R u n n i n g A b s o l u t e

1. Select Sheet2 and click on cell A1.

2. Run the TitleMyAbsolute macro.

Your screen should look like this.

VBA Excel 2013/2016

 25

U s i n g R e l a t i v e

1. Select Sheet3 and click on cell C2 to select.

2. Click the Relative Reference button on the Macros menu. (Relative

References is on)

3. Click the Record Macro button.

4. Type: TitleMyRelative for Macro name.

5. In the Description box type: Use Relative title for heading.

6. Click the OK button.

7. Type: Western Region (in cell C2) and press [Enter].

8. Type: First Quarter Sales and press [Enter].

9. Select C2 and drag to F2.

10. Click the Merge and Center button.

11. Select C3 and drag to F3.

12. Click the Merge and Center button.

VBA Excel 2013/2016

 26

Your screen should look like this.

13. Click the Stop Recording macro button.

T e s t i n g A b s o l u t e a n d R e l a t i v e m a c r o s

The Absolute macro will always place your information in the same location. No

matter where the active cell maybe the titles in the macro will always end up on

the second and third roll between the C and F column.

You will see that the Relative macro will place the title where you place the

active cell.

1. Click on Sheet4 and click on cell J24.

2. Run the TitleMyAbsolute macro.

(Hint: Tools, Macro, Macros)

Notice the heading is placed in between column C and F, on row 2 and 3.

3. Click on cell K8.

4. Run the TitleMyRelative macro.

Notice the heading is placed from K8 to K9, merged and centered.

VBA Excel 2013/2016

 27

V i e w i n g c o d e o f b o t h A b s o l u t e a n d R e l a t i v e m a c r o s

1. On the Developer’s ribbon, click on the Visual Basic button.

Your screen should look like this.

2. If the Project – VBAProject pane is not open, press the Ctrl + R hotkey.

3. If the Module1 window is not open, double click on the Module1 icon in the

project pane.

C o d e f o r A b s o l u t e

VBA Excel 2013/2016

 28

C o d e f o r R e l a t i v e

Assigning your macros to menus, buttons and toolbars

After a macro has been created you might like to have a button on your toolbar to

quickly run your macro(s).

As you have seen earlier shortcut keys can be used also. But assigning buttons

and menus is easy to do.

A d d i n g a b u t t o n t o y o u r t o o l b a r

1. On the Developer’s ribbon, click Insert button and click the Button in the

Form Controls row.

2. Drag the mouse plus from H2 to J3 and release.

3. In the Assign Macro dialog box, click on TitleMyRelative and click OK.

4. Drag across the text: Button 1

Notice an I beam will appear when the pointer is next to the “B”.

5. Type: My Relative Title

VBA Excel 2013/2016

 29

6. Click a blank cell in the spreadsheet to activate the button.

T e s t i n g y o u r b u t t o n

1. Select the cell H24 on Sheet4.

2. Click your new button.

Your heading is placed, starting with H24 to K24.

A d d i n g a n e w b u t t o n t o t h e Q u i c k A c c e s s T o o l b a r

1. Click the More button on the Quick Access Toolbar.

2. Click the More Commands… menu .

3. Click the down-arrow for “Choose commands from:”.

4. Select Macros from the menu.

5. In the list of macros, select TitleMyRelative.

6. Click the Add > > button in the middle of the dialog box.

The macro has been added to the Quick Access Toolbar.

VBA Excel 2013/2016

 30

A d d a n I c o n t o t h e Q A T f o r y o u r m a c r o

1. Click the Modify… button.

2. In the Modify Button dialog box, click the symbol you would like for your

macro button.

3. In the Display name: text box, type: Title My Relative.

Example:

4. Click the OK button to close the dialog box.

VBA Excel 2013/2016

 31

Section 2 – Review

You must be able to answer the following questions on your own. As you review

the questions below, write in your answer below each one.

1. Where can you find the Relative button to record your macro relative?

2. If you record a relative macro how is this different?

3. Where can you find a macro button to add to the Quick Access Toolbar?

4. How do you assign a macro to a button?

Additional Study

Use the Microsoft Excel help features to look up the key words from this section

for additional information. Example: Macros, VBA.

VBA Excel 2013/2016

 32

VBA Excel 2013/2016

 33

SECTION 3 ◊ MAKE DECISIONS

What will I learn in this section?

IF … ELSE … END IF

DO… LOOP

FOR… NEXT

SELECT CASE … CASE IS…

WORKING WITH RANGES

VBA Excel 2013/2016

 34

Making Decisions with code

There are a number of ways to use code to help make decisions. In this section

you will first take a look at If… Then statement and the Do… Loop statement.

You will end up with For… Next statement.

With the If statement you have a conditional statement. Such as X=2 or another

example is “book” =

“book”.

Operator Symbol Operator meaning

< Less than

<= Less than or equal to

> Greater

>= Greater than or equal to

= Equal to

<> Not equal to

When creating the If statement it can be one line execute or multiple lines.

Single-line

If A1content = B1content Then ActiveCell.Font.Bold = True

Multiple-line

If Alcontent = B1content then

Activecell.Font.Bold = True

Selection.NumberFormat = "m/d/yy"

VBA Excel 2013/2016

 35

End If

M u l t i p l e - l i n e E l s e

If Alcontent = B1content then

Activecell.Font.Bold = True

Selection.NumberFormat = "m/d/yy"

Else

Activecell.Font.Italic = True

End If

Now a little about how a Do – Loop statement works. Do loops are great tools to
have when you are working with your spreadsheet. They will until a condition is
met or until a condition is changes to something.

In our example (after the IF) you will have the loop continue until it encounters a

blank cell.

 Understanding the DO…Loop syntax:

 Do Do

 Statement Statement

 Loop while condition Loop until condition

 Examples:

Do Do

ActiveCell > 5000 then ActiveCell.Font.Bold = True ActiveCell > 5000 then ActiveCell.Font.Bold = True

Loop while activecell <> ”” Loop until activecell = ””

VBA Excel 2013/2016

 36

In the next few steps you will build an If statement to check to see if a number is

over 5000 and if it is make it bold.

1. Open the file IfCase.xlsm.

2. Click on cell C2.

3. Press the hotkeys ALT + F11

This will open the VBA editor.

4. Right click on the Microsoft Excel Objects folder under VBAProject

(IfCase.xls).

5. With the mouse point to Insert menu, then click the Module menu.

Your screen should look like this.

You now have a Module1.

6. Type: Sub MyFirstIf()

7. Press the [ENTER] key.

VBA Excel 2013/2016

 37

Your screen should look like this.

8. Type: If ActiveCell > 5000 then ActiveCell.Font.Bold = True

9. Click the Save button in the Visual Basic Editor.

T e s t i n g y o u r I f s t a t e m e n t

1. Click the Macros, View Macros menu item

2. Run the macro MyFirstIf.

3. The cell C2 should now be bold.

Now let’s take the IF and have it check all the numbers. To do this you will need

the macro to move the active cell during the process of checking. First you will

record a macro to move down one cell. This is a quick way to generate code

without the need to look it up.

Once you have recorded the code, you will take that recorded code and add it to

your MyFirstIf macro.

VBA Excel 2013/2016

 38

T u r n o n t h e R e l a t i v e R e f e r e n c e

You want to use this code in different columns, so an absolute is not needed in

this case. You will need to use relative for the macro to work correctly.

1. On the Developer’s ribbon, click the Use Relative References if needed.

2. Click Record Macro button and name the macro MoveDownOne.

3. Confirm the dialog box is set to Store macro in: This Workbook.

4. Click OK to start the macro.

5. Press the [ENTER] key and click the Stop Recording button.

C o p y i n g C o d e

1. Press ALT + F11 to open the Visual Basic Editor.

2. Double click the Module2 to see the new macro and code.

3. Copy: ActiveCell.Offset(1 , 0).Range("A1").Select

4. Double click the Module1 folder to see the macro MyFirstIf.

5. Place the cursor at the end of the word True and press [ENTER].

6. With the cursor under your IF statement, click the Paste button.

Your screen should look like this.

7. Click the Save button to save the macro code.

A d d i n g D o … L o o p s t a t e m e n t

In the macro above one of the problems is the macro is not checking each number

in the list. So, you need some code that will check the first number, then move

VBA Excel 2013/2016

 39

down one row and check the next number. This needs to continue until all the

numbers have been checked.

The Do loop statement is idea for repeating a process over and over until a

condition is met or changes. You will now add the Do Loop to your current macro

to have it repeat the two steps until the macro reaches an empty cell.

1. Press ALT + F11 to open the Visual Basic Editor.

2. Double click the Module1 to see the macro MyFirstIf and code.

3. Click at the end of the "Sub MyFirstIf()" line and press [ENTER].

4. Type: Do

5. Click at the end of the "ActiveCell.Offset(1, 0).Range("A1").Select" line and

press [ENTER].

6. Type: Loop Until Active Cell = " "

Your screen should look like this.

Notice the loop statement: Loop Until ActiveCell = ""

With this statement you are asking the Do Loop to process the code in between the

do and the Loop statement but before it is repeated again check the active cell to

see if it is empty or not. If the active cell is empty the loop will not continue. If the

cell is NOT empty VB will jump back up to the DO and process the code again.

T e s t i n g t h e D o L o o p

1. Select C5 on Sheet2 in the IfCase.xls workbook.

2. Run the MyFirstIf macro.

3. The cell C2 should now be bold.

VBA Excel 2013/2016

 40

Now let’s take the IF and have it check all the numbers. To do this you will need

the macro to move the active cell during the process of checking. First you will

record a macro to move down one cell. This is a quick way to generate code

without the need to look it up.

Once you have recorded the code, you will take that recorded code and add it to

your MyFirstIf macro.

You want to use this code in different columns, so an absolute is not needed in

this case. You will need to use relative for the macro to work correctly.

1. On the Developer’s ribbon, click the Use Relative References if needed.

2. Click Record Macro button and name the macro MoveDownOne.

3. Confirm the dialog box is set to Store macro in: This Workbook.

4. Click OK to start the macro.

5. Press the [ENTER] key and click the Stop Recording button.

C o p y i n g C o d e

1. Press ALT + F11 to open the Visual Basic Editor.

2. Double click the Module2 to see the new macro and code.

3. Copy: ActiveCell.Offset(1, 0).Range(" A1").Select

4. Double click the Module1 folder to see the macro MyFirstIf.

5. Place the cursor at the end of the word True and press [ENTER].

6. With the cursor under your IF statement, click the Paste button.

VBA Excel 2013/2016

 41

Your screen should look like this.

7. Click the Save button to save the macro code.

T e s t i n g y o u r n e w I f s t a t e m e n t

1. Select the cell C6 and click the Bold button to remove bold.

2. Select the cell C5.

3. Run the MyFirstIf macro.

What happen to the numbers in the list?

What is the macro doing at this point?

How can we make it work?

A d d i n g D o … L o o p s t a t e m e n t

In the macro above one of the problems is the macro is not checking each number

in the list. So you need some code that will check the first number, then move

down one row and check the next number. This needs to continue until all the

numbers have been checked.

The Do loop statement is idea for repeating a process over and over until a

condition is met or changes. You will now add the Do Loop to your current macro

to have it repeat the two steps until the macro reaches an empty cell.

1. Press ALT + F11 to open the Visual Basic Editor.

2. Double click the Module1 to see the macro MyFirstIf and code.

3. Click at the end of the "Sub MyFirstIf()" line and press [ENTER].

4. Type: Do

5. Click at the end of the "ActiveCell.Offset(1, 0).Range("A1").Select" line and

press [ENTER].

6. Type: Loop Until ActiveCell = " "

VBA Excel 2013/2016

 42

Your screen should look like this.

Notice the loop statement: Loop Until ActiveCell = ""

With this statement you are asking the Do… Loop to process the code in between

the Do and the Loop statement but before it is repeated check the active cell to

see if it is empty or not. If the active cell is empty the loop will not continue. If the

cell is NOT empty the code will be repeated again.

T e s t i n g t h e D o L o o p

1. Select C5 on Sheet2 in the IfCase.xlsm workbook.

2. Run the MyFirstIf macro.

Your screen should look like this.

Now that you have learned how to repeat a process you can expand your

selections by using the Select Case statement.

Understanding the SELECT CASE syntax:

VBA Excel 2013/2016

 43

Select Case {expression}

Case Is {value 1}

Statement

Case Is {value 2}

Statement

Case Is {value 3}

Statement

Case else (optional)

Statement

End Select

Example of a Case statement:

Select Case ActiveCell

Case Is < 4000

Selection.Font.ColorIndex = 7

Case Is < 5000

Selection.Font.ColorIndex = 5

Case Is < 6000

Selection.Font.ColorIndex = 3

End Select

In your next macro you will use a Select Case to check the size of the numbers and

based on the size of the number give them a color.

In the Microsoft Visual Basic Help you can look up the Pattern ColorIndex

Property to find the below table of colors.

VBA Excel 2013/2016

 44

Color is a great way to have items on your spreadsheet show up and be easily

identified.

1. In Module1 type the following code above the MyFirstIf macro:

Notice that you are using the Do Loop and the line of code that moves the

active cell down one. Here you are beginning to add code that you have

already learned to make your code more versatile.

2. After the macro is complete, select D5 on Sheet2 in the IfCase.xlsm

workbook.

3. Run the colorformatting macro.

VBA Excel 2013/2016

 45

Your screen should look like this.

Notice here that the numbers take on a different color based on their size. Your

case statement has given a different color to the numbers based on Case Is test

for less than a certain number.

VBA Excel 2013/2016

 46

H o w t o c o u n t

One of our issues for working with spreadsheets is to know how many rows or

columns we must work with. To find out you can use a simple counter.

Example: Bucket = Bucket + 1

Do

ActiveCell.Offset(1, 0).Range("A1").Select

Bucket = Bucket + 1

Loop Until ActiveCell = ""

This is just one of many ways to count the rows with content.

F o r … N e x t s t a t e m e n t

The For Next loop uses a counter variable that increases or decreases in value

during each repetition or rotation of the loop.

Understanding the For…Next syntax:

Declare variable (counter) to hold number

For counter = start to end

 Statement

Next counter

Dim bucket as integer

Bucket = 1

For bucket = 1 to 4

 If Activecell > 5000 then

Activecell.font.bold = true

Activecell.offset(1, 0).Range(“A1”).Select

Next bucket

In the example on the right the For… Next loop will count to 4. There are three (3)

numbers in this structure; Bucket will keep track of loops are done, the one (1) in

the 1 to 4 is the starting point of the loops (the loop starts counting at 1), the four

(4) is the number of times the loop will be done and the ending point of the loops.

Another way to think of this is it will repeat the command lines 4 times (1 to 4).

Bucket is used here to match the starting number and keep track of each repeat

that the loop does. That is why we call it the counter, it retains the current number

the loop has done.

When the counter (Bucket) reaches the number to the right of “to” then the loop

will stop.

VBA Excel 2013/2016

 47

(Dim is an abbreviation of dimension, a holdover from the old BASIC language.

It would make more sense to use the word Declare, but we are stuck with Dim.)

Declaring variables has two advantages. First, it helps catch spelling mistakes.

Suppose you use the variable bucket several times in a sub, but in one case you

misspell it as buckte. If you have already declared bucket in a Dim statement, VBA

will catch your spelling error, reasoning that buckte is not on the list of declared

variables.

The second reason for declaring variables is that you can then specify the types

of variables you have. Each type requires a certain amount of computer memory,

and each is handled in a certain way by VBA. It is much better for you, the

programmer, to tell VBA what types of variables you have than to let it try to

determine them from context. The variable types used most often are the following.

● String (for text like “Bob” or “The program ran without errors.”)
● Integer (for integer values in the range −32,768 to 32,767)
● Long (for really large integers beyond the Integer range)
● Boolean (for variables that can be True or False)
● Single (for numbers with decimals)
● Double (for numbers with decimals where you require more accuracy than
with Single)
● Currency (for monetary values)
● Variant (a catch-all, where you let VBA decide how to deal with the variable)

Symbols for Data Types

It is also possible to declare (some) data types by the symbols in Table 5.1. For
example, you could use Dim bucket@ or Dim bucket%, where the symbol follows
the variable name. This practice is essentially a holdover from older versions of the
BASIC language, and you might see it in legacy code. However,
I don’t recommend using this rather obscure shorthand way of declaring
variables. After all, would you remember them better?

Symbols for Data Types
Integer %
Long &
Single !
Double #
Currency @
String $

When you use the Dim statement in a procedure, you put the Dim statement at

the beginning of the procedure. Use a Dim statement to declare the object type of

a variable. In the above the word bucket is used as a variable. You can use any

word you like for the variable name.

A variable is the named storage location that can contain data that can be
modified during program execution. Each variable has a name that uniquely
identifies it within its scope. A data type can be specified or not.

VBA Excel 2013/2016

 48

Variable names must begin with an alphabetic character, must be unique within
the same scope, can't be longer than 255 characters, and can't contain an
embedded period or type-declaration character.

If you don't specify a data type, the variable is a Variant by default.

V a r i a b l e N a m i n g C o n v e n t i o n s

Programmers have surprisingly strong feelings about variable naming

conventions. The one thing they all agree on is that variable names should

indicate what the variables represent. So, it is much better to use a name such

as taxRate than to use a generic name like x. Your code becomes much

easier to read, both for others and for yourself, if you use descriptive names.

Beyond this basic suggestion, however, there are at least three naming
conventions used in the programming world, and each has its proponents. The
Pascal convention uses names like TaxRate, where the first letter in each
“word” in the name is upper case. The camel convention is similar, but it does
not capitalize the first word. Therefore, it would use the name taxRate. (The
term camel indicates that the hump is in the middle, just like a camel.) Finally,
the Hungarian convention, named after a Hungarian programmer, prefixes
variables with up to three characters to indicate their variables types. For
example, it might

use the name sngTaxRate to indicate that this variable is of type Single. Other

commonly used prefixes are int (for Integer), bln (for Boolean), str (for String),

and so on. The proponents of the Hungarian convention like it because it is

self-documenting. If you see the variable sngTaxRate in the middle of a

program, you immediately know that it is of type Single, without having to go

back to the Dim statement that declares the variable.

Which convention should you use? This seems to depend on which

convention is currently in style, and this changes over time. For a while, it

seemed that the Hungarian convention was the “in thing,” but it results in some

rather long and ugly variable names. At present, the camel convention

appears to be the most popular, so I have adopted it throughout this book.

But if you end up programming for your company, there will probably be a

corporate style that you will be required to follow.

C o n s t a n t s

The term variable means that it can change. Specifically, the variables
discussed earlier can change values as a program runs—and they often do.
There are times, however, when you want to define a constant that never
changes during the pro- gram. The reason is usually the following. Suppose
you have a parameter such as a tax rate that plays a role in your program. You
know that its value is 28% and that it will never change (at least, not within
your program). You could type the value 0.28 every place in your program where
you need to use the tax rate.

VBA Excel 2013/2016

 49

However, suppose the tax rate changes to 29% next year. To use your old
program, you would need to search through all of the lines of code and change
0.28 to 0.29 whenever it appears. This is not only time-consuming, but it is
prone to errors. (Maybe one of the 0.28 values you find is not a tax rate but is
something else. You don’t want to change it!)
A better approach is to define a constant with a line such as the following.

Const taxRae = 0.28

This line is typically placed toward the beginning of your sub, right below the

variable declarations (the Dim statements). Then every place in your sub

where you need a tax rate, you type taxRate rather than 0.28. If the tax rate

does happen to change to 29% next year, all you have to change is the value

in the Const line.2 Another advantage to using constants is that your

programs don’t have “magic numbers.” A magic number is a number found in

the body of a program that seems to appear out of nowhere. A person

reading your program probably has no idea what a number such as 0.28

represents (unless you explain it with a comment or two). In contrast, if the

person sees taxRate, there is no question

what it means. So, try your best to use constants and avoid magic numbers.3

B u i l t - i n C o n s t a n t s

There are many built-in constants that you will see in VBA. They are either
built into the VBA language, in which case they have the prefix vb, they are
built into the Excel library, in which case they have the prefix xl, or they are
built into the Microsoft Office library, in which case they have the prefix mso.

Actually, these constants all have integer values, and they are all members of
enumerations. A simple example illustrates the concept of an enumeration.
Consider the Color property of a Font object. It can be one of eight possible
integer values, and no one on earth would possibly memorize these eight
values. (They are not 1 through 8.) Instead, you remember them by their
constant names: vbBlack, vbBlue, vbCyan, vbGreen, vbMagenta, vbRed,
vbWhite, and vbYellow. Using these constants, you can change the color of a
font in a line such as:
Range(“A1”).Font.Color = vbBlue

Similarly, Excel has a number of enumerations. One that is useful when dealing
with ranges is the set of possible directions, corresponding to the four arrows
keys: xlDown, xlUp, xlToRight, and xlToLeft. Again, these constants are really
integer values that no one in the world remembers. You remember them instead
by their more suggestive names.

To view the many enumerations for VBA, Excel, and Office, open the Object
Browser, select the VBA, Excel, or Office library, and search the class list for items

VBA Excel 2013/2016

 50

starting with Vb, Xl, or Mso. Each of them is an enumeration that holds a number
of built-in constants. For example, the XlDirection enumeration holds the constants
xlDown, xlUp, xlToRight, and xlToLeft, and the VbMsgBoxStyle enumeration
holds all the constants that correspond to message box icons and buttons.

O b j e c t V a r i a b l e s

There is one other type of variable. This is an Object variable, which “points” to
an object. For example, suppose you have a Range object, specified by the range
name Scores on a worksheet named Data, that you intend to reference several
times in your program. To save yourself a lot of typing, you can Set a range
object variable named scoreRange to this range with the lines:

Dim scoreRange as Range

Set scoreRange = ActiveWorkbook.Worksheets(“Data”).Range(“Scores”)

From then on, you can simply refer to scoreRange. For example, you could
change its font size with the line:

scoreRange.Font.Size = 12

In the next few steps you will check a list of 25 numbers. There are 25 products
and no matter which spreadsheet you open with a product list, there is all ways 25
items. Because you know the total number ahead of time you want to create a For
Next loop to check your numbers.

1. Click on Sheet2 tab and click E5 in the IfCase.xls workbook.

2. Press ALT + F11 to open the Visual Basic Editor.

3. At the bottom of Module1 type the following:

4. Click on Sheet2 tab and click E5 in the IfCase.xlsm workbook.

5. Run the CheckMy25 macro.

Notice you have a number of items Bold and the active cell ended on the blank

cell below the last column. Why because you told the macro to do the IF 25 times.

VBA Excel 2013/2016

 51

W o r k i n g w i t h o b j e c t s u s i n g a F o r … N e x t s t a t e m e n t

An Object in VBA is something you name, control, and manipulate in procedures.

In Excel an object can be; worksheet, selected range, or charts.

You can assign variables to refer to an object, it is easier to refer to the objects

themselves. The SET statement is used to assign a variable to an object. A

common object is the active cell or the activecell in a selected range.

Set Selection1 = ActiveCell

Here you are using "Selection1" to be the name of the object.

With this you have given the active cell a name that you can use in your macro.

In the next few steps you will use the SET variable to loop through the For…Next

statement. Plus you will use an IF… Else… End If statement to make a decision

on Bold or Italic formatting based on the size of the number.

You will change your current CheckMy25 macro to check all the numbers in a

selected area; the range you have selected.

1. Change your CheckMySelection macro to look like this:

CheckMySelection()

VBA Excel 2013/2016

 52

2. Select the range E5:E29 on Sheet2.

3. Run the macro CheckMySelection.

You could select the whole range of numbers and run the macro again and it

would do all the numbers.

H o w t o s e l e c t a r a n g e b a s e d o n s t a r t i n g p o i n t

In Excel you can extend the highlight from the active cell to the last cell in the

range. In the next few steps you will type out the code that will do just that.

anchor_cell will be used to pickup the current cell address and hold it.

anchor_cell is a bucket to hold the cell address.

ActiveCell.End can be used to go in all four directions.

Example: xlDown, xlToLeft, xlToRight, xlUp

In your code you want it to go down and to the right to find the last cell in the

bottom row.

The last bit of your code is to select the complete range:

Range(anchor_cell, ActiveCell).Select

Think of it as: Range(“E5”, “G29”).Select

This last step takes the point of the anchor (the cell you first select) and the last

cell at the bottom right and extends the highlight from top left to the bottom right.

After you have created and used the code, in the next section you will copy this

macro over to the personal.xls file to use globally. This will be explained in the

next section.

1. Type the following in your IfCase.xlsm Module1 sheet below the other

macros.

2. Select Sheet2, click on cell C5.

VBA Excel 2013/2016

 53

3. Run the macro SelectWholeRange.

VBA Excel 2013/2016

 54

Your screen should look like this.

This can be a handy bit of code to use in other macros.

Now that you have two macros you can place one in another and have the two

macros work together.

H o w t o a d d o n e m a c r o i n a n o t h e r ' s r o u t i n e

In Excel you can use macros stored in you workbook to run from another macro.

Here you just add the name of the macro. In step 1 of the prior page you created a

macro to select a range of cells with data. Here you can see that we added the

name of the macro “CheckMySelection” to the next to the last line.

On page 40 you create the macro to check your selection of items and if greater

than 5000 make them bold if not make them italic.

This first part of the macro will highlight the range for you and the name you

added, CheckMySelection will mark them.

CheckMySelection

VBA Excel 2013/2016

 55

Section 3 – Review

You must be able to answer the following questions on your own. As you

review the questions below, write in your answer below each one.

1. Can an IF statement be just one line?

2. Will a DO loop check before it runs or after it runs?

3. Why would you use a FOR – NEXT loop?

4. Why would you declare a variable at the beginning of your macro?

Additional Study

Use the Microsoft Excel help features to look up the key words from this section

for additional information. Example: AutoSum, AutoFilter.

VBA Excel 2013/2016

 56

SECTION 4 ◊ PERSONAL.XLSB

What will I learn in this section?

Personal.xlsb store for global use

Setup for Auto run

Final Exercise

VBA Excel 2013/2016

 57

Personal Workbook Macros

There will be many of your macros that you would like to use over and over; no

matter what workbook you open. A macro of this type is a global macro and

should always be stored in the Personal.xls workbook.

This workbook is stored in the XLSTART subfolder under your login.

Example: C:\Documents and Settings\{userlogin}\Application

Data\Microsoft\Excel\XLSTART

H o w d o I c r e a t e a P e r s o n a l . x l s b f i l e ?

1. In Excel, click the Record Macro button.

2. Type: test

3. Click the drop down button for Store macro in: list and select Personal

Macro Workbook.

VBA Excel 2013/2016

 58

4. Click the OK button to start the recording.

5. Press [ENTER] and click the Stop Recording macro button.

6. Press the ALT + F11 shortcut key to open the VBE.

Your screen should look like this.

7. Click the Save button in the VBE to save your new PERSONAL.XLSB

workbook.

You can now delete the test macro and copy any macro that you have already

created to the personal.xlsb workbook to use globally.

In the future you can record your macro in the personal.xlsb when you would like

them to be global.

A u t o R u n M a c r o (s)

In Excel there is a way to make sure a macro is ran based on the event, that event

is the opening of an excel workbook.

You might like to have a macro run to check something in the spreadsheet before

the user starts working, or you might like to prompt the user to do or check

something before they start to work.

To have your macro run as soon as the workbook is open you just name the

macro Auto_Open. If you would like something to be done as the workbook is

closing, you name the macro Auto_Close. These two names are unique in

VBA Excel 2013/2016

59

Excel and Excel understands what it should do with the code placed in either

macro.

A u t o _ O p e n

Try the below example to see how the Auto_Open macro can work for you.

1. Open a new workbook.

2. Save the workbook as test.xlsm

3. Press ALT + F11 to open the VBE.

4. Add a module to the workbook.

(Hint: right click the Microsoft Excel Objects folder.)

5. Type the below macro.

6. Save the workbook and then reopen.

Your screen should look like this.

7. Click the OK button to close the message.

You can use the Auto_Open to do a number of things; pre-fill cells, formatting,

check for… anything you like.

VBA Excel 2013/2016

 60

A u t o _ C l o s e

You also use the Auto_Close, this can be a life saver for any workbook that you

need to check items before it closes. This macro will run every time you close, or

should I say try to close your workbook. If the items, you are check on are not

completed or left blank etc. you can have the file not close and prompt the user to

do something more to the spreadsheet.

Example of an Auto_Close macro:

Final Exercise

You will open the file FinalExercise. Write a macro using a Do Loop to count how

many sales where made this day (using the Cost column) of your file. Click on cell

F5 and create a macro to 1) count the number of sales made for the day. (see

page 46)

2) have a message box appear giving the total number of sales for the day.

(see page 59) Remember to add an item on to the text of your message you need
to insert the & symbol.

3) After you have completed step 1 & 2, take the number and use it in a macro to

make all numbers $6,000 or over bold. (see page 50)

Now all three steps should run together.

VBA Excel 2013/2016

 61

INDEX

Absolute or Relative 20

Auto_Close 55

Auto_Open 54

Case statement.............................. 41

Code .. 13

Color .. 42

Customize the Ribbon 20

Dim statement 44

Do… Loop statement 36

DO…Loop 33

Filter ... 7

If statement 32

Modify .. 28

Open .. 5

Record Macro 8

Relative Reference 23

Stop Recording 10

Use Relative References 36

View Macros 6

Visual Basic 25

